Planetary migration: basics, recent results and new challenges

Clément Baruteau

University of California at Santa Cruz ISIMA, UCSC, Aug. 05th 2010

Nustration: planet in a protoplanetary disk (numerical simulation)

Exoplanets statistical properties

473 exoplanets to date

Connection with planetary formation

Hot Jupiters should have formed further out and migrated inward

Connection with planetary formation

Possible fast formation far through gravitational instability, but what about migration?

What do we know about protoplanetary disks?

Millimeter interferometry (e.g. CO emission lines) gives insight into disk properties beyond ~ 50 AU, *a priori* far from regions of planet formation (1-10AU)

Surface density and temperature are modelled as power-law functions of radius, $\Sigma \sim r^{-1.5}$, T ~ r^{-0.5}

In (the inner) regions of planet formation, disks should be **optically thick**, and their self-gravity should be negligible

Disk turbulence in these regions? generally modelled by viscous diffusion.

Disk response to an embedded protoplanet

(see animation)

Disk response to an embedded protoplanet

The planet excites a one-armed spiral wake propagating both inwards and outwards.

The gravitational force that the wake exerts onto the planet modifies the <u>planet's semi-</u><u>major axis</u>, eccentricity and inclination.

Planetary migration

Disk response to an embedded protoplanet

The inner wake exerts a **positive torque** on the planet, and tends to impose an **outward migration**

The outer wake exerts a negative torque on the planet, and tends to impose an inward migration

The sum of these two torques, called the differential Lindblad torque, is negative \rightarrow inward migration (Ward 1986)

Differential Lindblad torque: resonances

Differential Lindblad torque

Can we reverse the sign of the Lindblad torque with a steeper surface density profile ?

Now assume a steeper surface density profile...

Differential Lindblad torque

Can we reverse the sign of the Lindblad torque with a steeper surface density profile ?

 \rightarrow No, the Lindblad torque is insensitive to the density gradient

Ward 1997

Differential Lindblad torque

But, the Lindblad torque may be reduced or even reversed in a super-Keplerian disk, e.g.: Hasegawa & Pudritz 2010

Type I migration in a nutshell

The planet exchanges angular momentum with:

- circulating fluid elements:
 - \rightarrow differential Lindblad torque
- librating fluid elements:

Type I migration in a nutshell

The planet exchanges angular momentum with:

- circulating fluid elements:

 - librating fluid elements:
 → corotation torque (horseshoe drag)

Type I migration in a nutshell

Saturation of the corotation torque

Vortensity is advected in 2D inviscid barotropic flows

In such flows, the horseshoe drag ultimately **vanishes** (saturates) as vortensity is progressively stirred up in the horseshoe region

Desaturating the corotation torque

Viscosity (disk is **laminar**, $\mathbf{v} = \alpha c H$) diffuses vortensity inside of the horseshoe region, and can maintain the corotation torque to its (maximum) fully unsaturated value...

Masset (2002)

Desaturating the corotation torque

Enhancing the corotation torque: the planet trap

Enhancing the corotation torque in radiatively inefficient disks

Inclusion of the gas thermodynamics:

Paardekooper & Mellema (2006) - 3D + radiative transfer

Enhancing the corotation torque in radiatively inefficient disks

Additional component of the horseshoe drag, scaling with the entropy gradient

Baruteau & Masset (2008a), Paardekooper & Papaloizou (2008), Masset & Casoli (2009), Paardekooper, Baruteau, Crida & Kley (2009)

This boost of the corotation torque may **solve** the lingering problem of a "too fast" type I planetary migration

A torque formula for population synthesis models

This boost of the corotation torque may **solve** the lingering problem of a "too fast" type I planetary migration

- depending on the entropy (density+temperature) gradient
- depending on the magnitude of the diffusion processes (viscosity + thermal diffusion)

A torque formula for population synthesis models

This boost of the corotation torque may **solve** the lingering problem of a "too fast" type I planetary migration

- depending on the entropy (density+temperature) gradient

- depending on the magnitude of the diffusion processes (viscosity + thermal diffusion)

\rightarrow need for a torque formula to be used by population synthesis models

A torque formula for population synthesis models

This boost of the corotation torque may **solve** the lingering problem of a "too fast" type I planetary migration

- depending on the entropy (density+temperature) gradient
- depending on the magnitude of the <u>diffusion</u> processes (viscosity + thermal diffusion)

→ what happens in a *turbulent* disk?

Corotation torque in turbulent disks

Context 3D MHD calculations... coming soon!

Aim

desaturation of the corotation torque with turbulence

Methods

2D Hydro + stochastic forcing (turbulent potential, Laughlin et al. 2004)

The parameters of the « turbulent potential » are **tuned** to give turbulence statistical properties as close as possible to those of 3D MHD runs

Comparison with laminar disk models

These results suggest that the desaturation properties of the corotation torque in turbulent disk models agree with those of laminar disk models

What about in MRI simulations?

Summary on type I migration

. . . .

The torque driving the migration of low-mass planets is two-fold:

To do list: - interplay with MHD turbulence (e.g. dead zone and planet trap), including several planets
- 3D torque formula for type I migration in radiative disks

Larger planet masses: the planet migration zoo

Courtesy of F. Masset

Thank you for your attention!